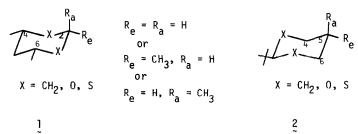
¹H AND ¹³C CHEMICAL SHIFTS: UNEXPLAINED ANALOGIES AND ANOMALIES

Ernest L. Eliel,^{*} V. S. Rao, F. W. Vierhapper and G. Zúñiga Juaristi W. R. Kenan, Jr. Laboratories of Chemistry University of North Carolina, Chapel Hill, N.C. 27514 USA

(Received in USA 8 September 1975; received in UK for publication 24 October 1975)


Cyclohexane and hetero-analogs of cyclohexane, such as 1,3-dioxane, 1,3-dithiane, etc. present relatively rigid frameworks¹ in which the effect of substituents and heteroatoms, <u>e.g.</u>, on spectral properties, can be systematically studied. Among the classical investigations in this area have been those of Lemieux, Bernstein and coworkers² on proton nmr spectroscopy and those of Grant and coworkers³ on ¹³C nuclear magnetic resonance.

Differences in chemical shifts of diastereotopic protons, <u>i.e.</u>, protons in chemically identical but stereochemically distinct environments, are customarily interpreted in terms of differences in diamagnetic anisotropy of C-C or C-X (X = heteroatom) bonds which are differently located with respect to the diastereotopic nuclei.⁴ Thus the fact that an axial proton in a cyclohexane resonates upfield of the corresponding equatorial one is usually explained in terms of the magnetic anisotropy of the C_g-C_γ bond. In contrast, the upfield ¹³C shift of axial methyl groups in methylcyclohexanes compared to equatorial ones has been accounted for^{3,5} in terms of the steric interaction of the protons of the methyl group with the <u>sym-axial</u> ring protons ("steric shift").

We wish to draw attention here to several instances where

- diamagnetic bond anisotropies alone do not properly account for differences in chemical shifts of diastereotopic protons and
- (2) there is a close analogy between shift differences of diastereotopic protons on one hand and diastereotopic methyl groups on the other so as to suggest a common origin of the two.²⁰

In Table 1 are summarized the proton shifts (1, R = H) and the ¹³C methyl shifts $(1, R = CH_3)$ of axial and equatorial substituents in cyclohexane $(X = CH_2)$, 1,3-dioxane (X = 0) and 1,3-dithiane (X = S) at position 2 (referring to the hetero-substituted systems).

4339

x	Item No.	– Protons (R ^H e	= H) ——— H _a	∆ <u>p</u>	Item No.	ethyl Carbo ^{Me} e	ons (R = CH, ^{Me} a	3) <u></u>
СН ₂ 0	1 ⁶ 2 ⁷	(1.67) ^C 4,87	(1.12) ^C 4.53	(0.55) <u>C</u> 0.34	4 ⁸ 5 <u>d</u>	22.8	18.9 17.0	3.9
S	3d	3.48	4.00	-0.52	6 ⁹	20.2	25.4	-5.2

Table 1. Chemical Shifts^a for Axial and Equatorial Substituents in 1.

 $\frac{a}{1}$ In ppm downfield from TMS. $\frac{b}{e}$ shift minus R_a -shift. $\frac{c}{2}$ These values are for H-4 in a highly deuterated <u>t</u>-butylcyclohexane. The values for 1, R = H, X = CH₂ are not available. $\frac{d}{2}$ This work.

These data should be compared to those for 2, shown in Table 2, which refer to the 5-position in the hetero-substituted systems.

,	<u> </u>	- Protons (R = H)	,	r	Methyl Carbo		
X	Item No.	не	H _a	Δ <u>D</u>	Item No.	Mee	Mea	<u>d</u> <u>A</u>
CH2	76	1.67	1.12	0.55	10 ⁸	22.7	17.5	5.2
0	8 ¹⁰	1.24	1.96	-0.72	1111	12.4	15.9	-3.5
S	<u>b</u> e	2.09 ^C	1.81 <u>°</u>	0.28	12 ⁹	22.2	16.4	5.8

Table 2. Chemical Shifts^a for Axial and Equatorial Substituents in 2.

 $\frac{a}{In}$ ppm downfield from TMS. $\frac{b}{R_e}$ -shift minus R_a -shift. CApproximative values; spectrum has not yet been completely analyzed. $\frac{12}{d}$ dThis work.

We note, first of all, that in 1,3-dioxane H-5a is downfield from H-5e (item 8, Table 2) but this "anomaly" is not found for H-2e and H-2a (item 2 in Table 1). In contrast, in 1,3-dithiane, the "anomaly" occurs at H-2a which is downfield from H-2e (Table 1, item 3) whereas the corresponding H-5's (Table 2, item 9) are "normal."¹³ These reversals cannot readily be ascribed to the anisotropy of the X-C₄ and X-C₆ (X = 0 or S) bonds, since these bonds have nearly the same disposition vis-á-vis corresponding protons at C-2 and at C-5, so that if a reversal of the normal upfield shift of H_a occurs at one site, it should also occur at the other.

Secondly we note that the same inversion of the "normal" upfield-downfield relation of axial and equatorial shifts also occurs for the 13 C signals of the methyl groups: In the 1,3-dioxane, Me-2a <u>vs</u>. Me-2e (item 5, Table 1) is "normal" but Me-5a <u>vs</u>. Me-5e (item 11, Table 2) is "anomalous." Contrariwise (but preserving the analogy with the proton situation), Me-2a <u>vs</u>. Me-2e (item 6, Table 1) is "anomalous" in 1,3-dithiane whereas Me-5a <u>vs</u>. Me-5e (item 12, Table 2) is "normal." It would almost appear as if the same factor which brings about reversal of the normal upfield shift of the axial nucleus in the 13 C spectrum is also responsible for the same reversal in the proton spectrum. We believe that this factor is <u>not</u> bond anisotropy; ¹⁴ we can only speculate that a paramagnetic shift (unusual in ¹H spectra of saturated compounds) occurs in the compounds bearing hetero-atoms with their unshared electron pairs; or, perhaps, that the effect observed is due to charge alternation effects.

Finally we draw attention to an apparent effect of lone pairs on <u>anti-periplanar</u> nuclei in amines (3, 4; test nuclei R = H or CH_3). It has been known for some time that protons in such positions are shifted strongly upfield.¹⁶ The data in Table 3 not only confirm this for the case

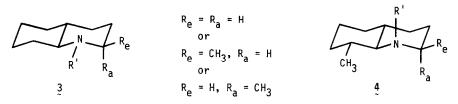


Table 3. Chemical Shifts^a of Substituents at C-2 (R_e , R_a) in N-Methyl-<u>trans</u>-decahydroquinolines (3, 4; $R' = CH_3$)

~			·····		
Compound	He	Ha	Mee	Mea	Ref.
3, R' = CH ₃	2.73	1.95	21.93	<u>9.08</u>	17b
4, R' = CH ₃	2.76	2.85	20.67	18.18	<u>Þ</u>

a_In ppm, downfield from TMS. _b_This work.

where R = H but show an exactly corresponding shift when R = CH_3 (underlined entries). (It should be noted that compounds 3 have nearly exclusively equatorial N-CH₃ because of the substantial inherent preference of the N-Me group for the equatorial position.¹⁸ Compounds 4, in contrast have axial N-Me groups because of the constraint provided by the equatorial C-methyl group at C-8.¹⁸)

Once again, the data in Table 3 suggest a common origin of the upfield shift for ${}^{1}H$ and ${}^{13}C.{}^{20}$ No such upfield shift occurs when the unshared pair is <u>syn</u>-clinal to the test nucleus (4). Thus one might be inclined to ascribe the upfield shift to an <u>anti</u>-periplanar effect of the lone pair, but such an interpretation must be viewed with caution. In the N-H analogs, R' = H, there is nearly no difference in either proton shifts (R = H, 3: H_e, 3.04; H_a, 2.62 ppm; 4: H_e, 3.08; H_a, 2.63 ppm) or ${}^{13}C$ shifts (R = CH₃, 3: Me_e, 22.95; Me_a, 18.62 ppm; 4: Me_e, 23.04; Me_a, 18.78 ppm, analog of 3 with axial Me group at C-8: Me_e, 23.01; Me_a, 18.22 ppm). Since the equilibrium constant for axial \rightleftharpoons equatorial NH in 3, R' = H, must be near unity, 18 this finding means either that the addition of equatorial or axial methyl groups at C-8 does not affect this equilibrium (which appears unlikely) or that the test nuclei (${}^{1}H$, ${}^{13}C$) at C-2 are insensitive to the position of the lone pair on nitrogen when the substituent on nitrogen is H rather than CH₃ (contrary to ref. 16b).

We believe that the various anomalies and analogies reported in this communication are due to a common cause 20 and hope that drawing attention to them will aid in the as yet elusive theoretical interpretation of the chemical shift.

<u>Acknowledgment</u>: We thank the National Science Foundation (Grant GP-35669X) for financial support. Dr. G. Furst prepared the 2,4,6-trimethyl-1,3-dioxanes (Table 1) and Dr. D. Harris recorded their cmr spectra.

References and Footnotes

- 1. cf. E. L. Eliel, Chemiker-Ztg., 97, 582 (1973); J. Chem. Educ., in press.
- R. U. Lemieux, R. K. Kullnig, H. J. Bernstein and W. G. Schneider, J. Am. Chem. Soc., <u>80</u>, 6098 (1958).
- (a) D. M. Grant and B. V. Cheney, J. Am. Chem. Soc., 89, 5315 (1967); (b) D. K. Dalling and D. M. Grant, <u>ibid.</u>, 89, 6612 (1967); (c) <u>id.</u>, <u>ibid.</u>, 94, 5318 (1972).
- cf. L. M. Jackman, "Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," Pergamon Press, New York, 1959, p 117.
- J. B. Stothers, "Carbon-13 NMR Spectroscopy," Academic Press, New York, 1972; G. C. Levy and G. L. Nelson, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists," Wiley-Interscience, New York, 1972.
- 6. J. D. Remijnse, H. Van Bekkum and B. M. Wepster, Rec. Trav. Chim., 90, 779 (1971).
- 7. E. L. Eliel and M. C. Knoeber, J. Am. Chem. Soc., 90, 3444 (1968).
- 8. R. L. Willer and F. W. Vierhapper, unpublished results. These values were taken in dilute (10%) CDC1₃ solution and, in the case of the 1,3,5-trimethylcyclohexanes, were chosen in preference to those of ref. 3b (obtained as neat liquids). Elsewhere we shall comment on the difference in methyl shifts between 1 and 2 ($X = CH_2$, $R = CH_3$).
- 9. E. L. Eliel, V. S. Rao and F. G. Riddell, submitted to J. Am. Chem. Soc.
- 10. H. R. Buys and E. L. Eliel, Tetrahedron Lett., 2779 (1970).
- A. J. Jones, E. L. Eliel, D. M. Grant, M. C. Knoeber and W. F. Bailey, J. Am. Chem. Soc., <u>93</u>, 4772 (1971).
- 12. This spectrum is highly second-order because of a near-degeneracy of H-4e and H-4a. These protons are intermediate in nature between those at H-2 (Table 1, item 3, $\delta_{\text{Ha}} > \delta_{\text{He}}$) and those at H-5 (Table 2, item 9, $\delta_{\text{Ha}} < \delta_{\text{He}}$), as a result $\delta_{\text{Ha}} \approx \delta_{\text{He}}$. Similar considerations apply to 1,3-dithianes with axial and equatorial Me-4 substituents; the difference in shift is diminished from the normal ~5 ppm to 1.9 ppm.
- 13. The H-2 anomaly in 1,3,5-trithianes was first noted by E. Campaigne, N. F. Chamberlain and B. E. Edwards, J. Org. Chem., 27, 135 (1962) and explained on the basis of a "negative diamagnetic bond anisotropy of the C-S bond" (i.e., x_{C-S} was assumed to have the opposite sign from x_{C-C} and x_{C-0}). For the reasons stated in the text, this explanation no longer seems plausible. See also S. A Khan, J. B. Lambert, O. Hernandez and F. A. Carey, J. Am. Chem. Soc., <u>97</u>, 1468 (1975).
- The same reversal is seen in the ¹⁹F spectra of 5-fluorosubstituted 1,3-dioxanes: S. Mager and E. L. Eliel, Rev. Roum. Chim., <u>18</u>, 2097 (1973).
- 15. J. A. Pople and M. S. Gordon, J. Am. Chem. Soc., 89, 4253 (1967).
- (a) H. P. Hamlow, S. Chuda and N. Nakagawa, Tetrahedron Lett., 2553 (1964); (b) J. B. Lambert, D. S. Bailey and B. F. Michel, J. Am. Chem. Soc., 94, 3812 (1972).
- (a) Proton shifts: F. W. Vierhapper and E. L. Eliel, J. Org. Chem., 40, 2734 (1975);
 (b) C-13 shifts: E. L. Eliel and F. W. Vierhapper, J. Org. Chem., in press.
- 18. E. L. Eliel and F. W. Vierhapper, J. Am. Chem.Soc., 97, 2424 (1975).
- (a) J. B. Lambert and S. I. Featherman, Chem. Rev., in press; (b) I. D. Blackburne, A. R. Katritzky and Y. Takeuchi, Accts. Chem. Res., in press.
- 20. A referee has drawn our attention to the "inherent dangers" of drawing analogies between ¹H and ¹³C shifts. We realize the mechanisms giving rise to the shielding constants are considered to be different in the two cases, but the experimental analogies do exist.